Bitte verwenden Sie Microsoft Edge, Google Chrome oder Firefox.
Der Begriff Korrosion leitet sich vom lateinischen „corredere“ ab und bedeutet zersetzen oder auch zerfressen. Korrosion kann sich in vielen Bereichen abspielen, so sprechen Geologen von Korrosion bei der Zersetzung von Gesteinen, ebenso wie Mediziner, wenn es um die Zersetzung von Geweben geht. Die elektrochemische Korrosion ist jedoch eine Variante, die in erster Linie Metalle betrifft. Dabei reagiert die Metalloberfläche entweder mit ihrer Umgebung oder auch mit anderen Metallen. Es spielen sich dabei Reduktions- und Oxidationsvorgänge ab, die nach und nach zur Zerstörung oder Veränderung an der Oberfläche des Metalls führen. Eine besondere Variante der elektrochemischen Korrosion ist die atmosphärische Korrosion. Sie setzt ab einer relativen Luftfeuchtigkeit von 65 Prozent ein. Dabei ist der Effekt stärker, je höher der Grad der Luftverschmutzung ist.
Damit eine elektrochemische Korrosion ablaufen kann, müssen einige Voraussetzungen erfüllt sein. Die verschiedenen Prozesse unterscheiden sich je nach Umgebung leicht voneinander. Das Grundprinzip ist dabei jedoch gleich: Ein Metall-Atom verändert sich durch Abgabe von Elektronen zu einem Metall-Ion. Diese negativ geladenen Moleküle werden in der Elektrolyt, eine elektrisch leitfähige Flüssigkeit, abgegeben. Der Verlust der Elektronen führt dazu, dass das Metall sich allmählich auflöst. Die abgegebenen Elektronen aus dem Metall werden von Sauerstoffmolekülen im Elektrolyt aufgenommen und gebunden. Neben der Oxidation spielen sich auch Reduktionsvorgänge ab. Sind der pH-Wert oder der Sauerstoffgehalt niedrig, greifen positiv geladene Moleküle, wie zum Beispiel Wasserstoffionen, Elektronen ab und sorgen zusätzlich für eine Strukturveränderung und Zerstörung der Metalloberfläche.
Wasser ist aus mehreren Gründen ein zentrales Element bei der elektrochemischen Korrosion:
Je edler das Metall, desto geringer die Wahrscheinlichkeit für elektrochemische Korrosion. So ist Gold zum Beispiel besonders resistent gegenüber Korrosionsschäden. Silber hingegen, wie du vielleicht beobachtet hast, kann schwarz werden. Diese Veränderung ist auf Korrosion zurückzuführen. Besonders anfällig für elektrochemische Zersetzung ist Roheisen. Das liegt unter anderem daran, dass Eisen ein vergleichsweise niedriges Spannungspotential besitzt. Ein anderer Grund ist die starke Verunreinigung von Roheisen im Vergleich zu anderen, edleren Metallen.
Die Bimetallkorrosion, auch bekannt als galvanische Korrosion oder Kontaktkorrosion, ist eine besondere Form der elektrochemischen Korrosion. Hierbei handelt es sich um eine Variante, bei der zwei verschiedene Metalle, möglicherweise auch andere leitfähige Elemente, miteinander korrodieren. Diesen Prozess kannst du in vielen Situationen beobachten, wie zum Beispiel:
Grundsätzlich gilt, je weiter die Metalle in der Spannungsreihe auseinander liegen, desto stärker ist die Kontaktkorrosion. Dabei geschieht folgendes: Kommen die beiden Metalle in Kontakt mit Wasser, entsteht durch die unterschiedlichen Elektrodenpotentiale eine elektrische Spannung. Dabei wandern Elektroden vom unedlen zum edleren Metall. So ist Stahl zum Beispiel edler als Roheisen und Kupfer edler als Zink. Nach dem Beispiel einer galvanischen Zelle ist Roheisen die Anode, wird also entladen. Der Stahl hingegen wird zur Kathode. Dort findet die Reduktion der Wasserstoff-Ionen statt.
Grundsätzlich spielt sich bei der Korrosion von Eisen ein ähnlicher Prozess ab wie bei anderen Metallen auch. Durch Oxidation entsteht als Endprodukt dieser chemischen Reaktion unter anderem Eisen(III)-oxid. Dieses gibt übrigens auch dem Rost seine typisch rote Färbung. Das Problem bei Eisen(III)-oxid ist jedoch, dass es, anders als andere Oxidationsprodukte, von der Metalloberfläche in Form von Plättchen abblättert. Dadurch wird die Metalloberfläche immer wieder freigelegt und kann weiter zersetzt werden, bis es irgendwann vollständig durchgerostet ist. Wenn zum Beispiel Aluminium oder Zink korrodieren, bleiben die Oxide an der Oberfläche haften und schützen die darunterliegende Schicht vor weiterer Korrosion.
Es gibt verschiedene Möglichkeiten des Korrosionsschutzes. Einige Ansätze bestehen darin, die Metalloberflächen vor Wasser abzuschirmen. Bei der Feuerverzinkung wird zum Beispiel Eisen oder Stahl mit einer Schicht Zink überzogen. Eine andere Option ist die Opferanode: Hier wird ein unedleres Metall, zum Beispiel Magnesium, elektrisch leitend mit dem eigentlichen Baumaterial verbunden. Dieses Verfahren kommt unter anderem im Schiffbau zum Einsatz. Das Magnesium löst sich allmählich auf, gibt seine Elektronen an die zu schützende Metalloberfläche ab und verhindert damit dessen elektrochemische Korrosion.
Es klingt wie Magie, ist aber Realität. Ein Metallkörper schwebt scheinbar schwerelose im Raum, ohne jedweden äusseren Einfluss. Dieses Bild eines Supraleiters begeistert nicht nur Science-Fiction Fans, sondern gehört mittlerweile in jeder Physikoberstufe zum Lehrplan. Die Details dahinter klingen nahezu so fantastisch wie der Vorgang selbst, den die Welt übrigens bereits am 8. April 1911 zum ersten Mal bestaunen durfte. Mit der Abkühlung von Quecksilber auf vier Grad über absolut Null (minus 269 Grad Celsius), gelang dem niederländischen Physiker und Nobelpreisträger Heike Kamerlingh Onnes die Sensation: Der elektrische Widerstand des Metalls ging auch gleich null, der Supraleiter war geboren.
Mit einem Solardach erzeugst du deinen eigenen Solarstrom. Vor allem Umweltfreunde und Menschen, die mit einer hohen Sonneneinstrahlung in ihrer Wohnumgebung gesegnet sind, entscheiden sich gerne für diese Variante. Anstelle der herkömmlichen Photovoltaik-Anlage, bei der Solarpanele auf deinem Dach angebracht werden, kannst du dich auch für unauffällige, elegante Solarziegel entscheiden. Diese Art der Dacheindeckung ist etwas teurer, punktet aber mit ihrer schönen Optik. Zudem haben die Solardachziegel gute Dämmeigenschaften, was sich im Winter bezahlt macht. Hier erfährst du mehr über die Vorteile der Solarziegel, ihre besonderen Eigenschaften, ihre Kosten und die beste Möglichkeit, sie auf deinem Dach zu installieren.
Der spezifische Widerstand von Kupfer ist ein wichtiger Wert in der Praxis der Elektrotechnik und Elektronik, denn Kupfer ist einer der meistverwendeten Leiter. Daher ist es wichtig, das Zustandekommen dieses Wertes und seine Abhängigkeit von der Temperatur zu verstehen. Mit einer einfachen Formel lässt sich auf diesen Grundlagen auch der Widerstand eines Drahtes, einer Spule oder einer anderen Leitung berechnen. Wir zeigen dir hier, wie es geht.