Leider unterstützen wir Internet Explorer nicht mehr.

Bitte verwenden Sie Microsoft Edge, Google Chrome oder Firefox.

Finde die besten Elektriker in deiner Nähe
>
Ratgeber-Übersicht
>
Elektrisches Potential – die unsichtbare Kraft der Leistung!

Elektrisches Potential – die unsichtbare Kraft der Leistung!

Das Potenzial, aus dem Lateinischen potentia für Kraft oder Leistung, bedeutet in der Physik, eine Arbeit zu verrichten. Als physikalische Grösse der klassischen Elektrodynamik, die sich sowohl mit der zeitlichen Veränderung von elektrischen und magnetischen Feldern als auch mit der Bewegung von elektrischen Ladungen innerhalb dieser Felder beschäftigt, ist ihr grundlegendes Merkmal die elektromagnetische Wechselwirkung. Der Elektromagnetismus gehört zu den vier Grundkräften der Physik und ist für die meisten alltäglichen Phänomene, wie natürliches Licht und Elektrizität, verantwortlich. Zwischen zwei entgegengesetzt geladenen Teilchen wird durch Arbeit, das Verschieben eines Teilchens, eine Potenzialdifferenz aufgebaut. Dies ist die elektrische Spannung U in Volt.

Was bedeutet der Begriff Potenzial?

Der Begriff Potenzial wird in vielen naturwissenschaftlichen Fachbereichen unterschiedlich definiert. Allgemein bedeutet Potenzial jedoch, Arbeit zu verrichten. In der Physik werden deswegen das elektrische Potential vom Gravitationspotential unterschieden und in der Chemie das chemische vom elektrochemischen Potential. In der Mathematik gibt es ausserdem das Vektorpotential und Skalarpotential.

Wie entsteht das elektrische Potential im Feld?

Der Begriff Potential stammt aus der Mechanik und beschreibt eine skalare Ortsfunktion im Gravitationsfeld. Befindet sich eine Probemasse an einem definierten Ort, so lässt sich durch Differenziation die Kraft F bestimmen, die an diesem Ort auf die Masse wirkt.

Das elektrische Potential, als eine physikalische Grösse der Elektrodynamik, beschreibt den Quotienten der potenziellen Energie einer Punktladung und dessen Ladung in einem Punkt des elektrischen Feldes, dem Potentialfeld. Angenommen, in einem elektrischen Feld soll eine positive Ladung Q von einer negativen Ladung q entfernt werden, so muss dazu Arbeit verrichtet werden. Wird die Ladung unendlich weit entfernt, ist die Coulombkraft zwischen beiden Ladungen Null. Die dafür notwendige Arbeit ist das elektrische Potential des Punktes a, einer Ortskoordinate im elektrischen Feld. Jedem Punkt im Vektorfeld kann somit ein skalares Potential zugeordnet werden.

Welcher Zusammenhang besteht zwischen dem elektrischen Potential und der elektrischen Spannung?

Wird zwei Punkten a und b in einem Vektorfeld ein Potential zugeordnet, ergibt sich daraus eine Potentialdifferenz zwischen den Punkten. Diese Potentialdifferenz ist die elektrische Spannung U, die somit der Arbeit entspricht, die aufgewendet werden muss, um die Ladung q von a nach b zu verschieben. Die Ladungsverschiebung bedeutet einen Energiezuwachs. Diese ist die potentielle Energie der Ladung q im Punkt b gegenüber Punkt a. Wird der Abstand von zwei ungleichen Ladungen vergrössert, erhöht sich die potentielle Energie der Ladung, da die Coulombkraft anziehend wirkt. Im umgekehrten Fall, bei zwei gleichen sich abstossenden Ladungen, wird die potentielle Energie verringert.

Warum wird das Potential in der Physik auch potentielle Energie genannt?

Das elektrische Potential wird auch potentielle Energie genannt, da es die Lage der Ladung im Kraftfeld, also dem elektrischen Feld beschreibt. Es ist somit eine Zustandsgrösse des derzeitigen Zustandes eines physikalischen Systems. Wird eine Ladung oder ein Körper im Feld oder Raum verschoben, ändert sich dessen kinetische Energie. Laut dem Energieerhaltungssatz bleibt die Gesamtenergie in einem abgeschlossenen System erhalten. Dementsprechend kann eine Energieform nur in eine andere Energieform umgewandelt werden. Es werden voneinander unterschieden:

  • kinetische Energie
  • potentielle Energie
  • elektrische Energie
  • thermische Energie
  • chemische Energie

Wird eine Probeladung q im elektrischen Feld verschoben, so führt die Veränderung der potentiellen Energie gleichermassen zur Zu- oder Abnahme der kinetischen Energie oder elektrischen Feldenergie.

Was ist eine Potentialfunktion?

Die mathematische Herleitung des Begriffes Potential darf nicht mit der physikalischen Zustandsbeschreibung, also dem Verhältnis eines Körpers und seiner potentiellen Energie zur Ladung und Masse, verwechselt werden. Hier können Funktionswerte (Volt, Ampere), aber auch Wechselwirkungen mit dem elektrischen Feld gemeint sein. In der Mathematik spricht man deswegen nicht von einem Vektorfeld, sondern von einem skalaren Feld, also von Skalarpotentialen, deren mathematische Grundlage die Potentialfunktion in einem elektrischen oder magnetischen Feld ist. Grafisch werden Potentialfunktionen in einem Koordinatensystem durch Stromlinien und Potentiallinien wiedergegeben.

Wie wird das elektrische Potential gemessen?

Das elektrische Potential, also die Potentialdifferenz und Spannung U an einem beliebigen Punkt im elektrischen Stromkreis, wird mithilfe eines Voltmeters gemessen. Das Potential einer beliebigen Stelle wird neutral, also auf null Volt festgelegt. Dies ist in den meisten Fällen der Minuspol oder die Masse (Erde). Der andere Pol des Voltmeters wird mit einer beliebigen Stelle im Stromkreis verbunden und das Voltmeter zeigt den Spannungsunterschied an.

Was ist ein elektrischer Schwingkreis?

Werden in einem Stromkreis eine Spule sowie ein Kondensator in Reihe hintereinander angeordnet und eine Wechselspannung angelegt, entsteht ein elektrischer Schwingkreis. Dieser elektromagnetische Schwingkreis wandelt stetig elektrische Feldenergie des Kondensators in magnetische Feldenergie der Spule um und umgekehrt.

Ist der Kondensator nach dem Anlegen der Spannung aufgeladen und wird die Spannungsquelle entfernt, ist die Feldstärke gleich null und es wird keine Kraft auf die Teilchen oder Ladungsträger ausgeübt. Demzufolge entlädt sich der Kondensator und das elektrische Feld zwischen den Kondensatorplatten baut sich ab. Im Schwingkreis ist hingegen noch Stromstärke vorhanden, die an der Spule ein Magnetfeld erzeugt. Kommt der Stromkreis zum Erliegen, bricht das Spulenfeld zusammen. Da ein zeitlich veränderliches Magnetfeld laut Induktionsgesetzt Induktionsgesetz eine Spannung erzeugt, wird wiederum elektrischer Strom im Schwingkreis erzeugt. Das Aufladen des Kondensators beginnt von neuem. Dieser periodische Vorgang wird als harmonische Oszillation oder harmonische Schwingungen bezeichnet.

Der Elektrikervergleich für die Schweiz. Finde die besten Elektriker in deiner Nähe - mit Preisen und Bewertungen!

Das könnte dich auch interessieren

Die Stromanschlüsse der Schweiz: passende Stecker für europäische und Schweizer Steckdosen

Reisende aus ganz Europa, speziell aus Deutschland und Österreich, bringen für ihren Aufenthalt in der Schweiz am besten ein wichtiges Utensil mit: Der Reiseadapter ist fürs Aufladen von Handy, Akkus für die Kamera oder andere Elektrogeräte unverzichtbar. Unterschiedliche Steckertypen und DIN-Normen machen den Einsatz des Adapters nötig. Damit du Geräte aus anderen Ländern ungehindert auch in der Alpenrepublik nutzen kannst, haben wir uns die häufigsten Fragen rund um die Stromanschlüsse der Schweiz angesehen.

Dimmer für LED – keine einheitlichen Standards vorhanden

Glühlampen werden mehr und mehr aus dem Handel verbannt, während Energiesparlampen zwar eine stromsparende Alternative sind, jedoch im Licht sehr grell und für bestimmte Räume ungeeignet bleiben. Daher sind LEDs die bessere Wahl – allerdings lassen sich die Leuchtmittel schlecht dimmen. Es gibt Dimmer für das Leuchtmittel der LEDs, die spezielle Aufgaben erfüllen. Nicht jeder ist für Leuchten dieser Art geeignet. Tatsächlich kann ein falscher Dimmer sogar die Lampe beschädigen. Wissenswertes über Dimmer für LEDs gibt es hier.

Notstromaggregate: Stromversorgung unabhängig vom öffentlichen Stromnetz

Wenn du bereits einmal einen Stromausfall erlebt hast, weisst du, wie wichtig Strom eigentlich ist. Sogenannte Notstromaggregate helfen in einem solchen Fall schnell und unkompliziert weiter. Egal ob auf Baustellen oder während deines Campingurlaubs: Mit den Notstromanlagen ist deine Stromversorgung gesichert und du musst dir keine Gedanken darüber machen, wie du nun Kaffee kochst oder dein Smartphone auflädst. Im Handel sind unterschiedliche Modelle aller Preisklassen erhältlich; auch eine Vermietung ist möglich. Alles Wichtige rund um Notstromaggregate haben wir dir hier zusammengestellt.

Der Schrittschalter als einfache Steuerungsmöglichkeit für Beleuchtungen

Der Schrittschalter oder Stromstossschalter ist eine ebenso einfache wie geniale Möglichkeit, eine Beleuchtung auch in grösseren Gebäuden durch mehrere Taster zu schalten. Durch sein simples und kostengünstiges Installationsprinzip erfreut sich der Schrittschalter seit Jahrzehnten konstanter Beliebtheit. Mit komplexeren Schaltungen lassen sich auch vielfältigere Funktionen als nur das Ein- und Ausschalten einer Beleuchtung durch den Schrittschalter steuern.

Steckertypen Schweiz: Darin unterscheiden sie sich von anderen Ländern

Bei einem Aufenthalt in einem fremden Land steht man häufig vor einem Problem: Man möchte sein Smartphone oder Tablet aufladen, der Stecker passt aber nicht in die vorhandenen Steckdosen. Was tun? Am einfachsten ist es, wenn du dir bereits vor deiner Reise Informationen über das jeweilige Zielland und dann einen Adapter besorgst. So unterscheiden sich beispielsweise die Steckertypen der Schweiz teilweise von den Varianten in Deutschland. Wenn du andere Kontinente bereist, solltest du ebenfalls einen Universaladapter dabei haben. Nur dann kannst du sicher sein, dass du deine Geräte ohne Probleme aufladen und benutzen kannst.

Photoelektrischer Effekt – kurz dargestellt, einfach erklärt

Der Photoelektrische Effekt beschreibt die Wechselwirkung zwischen elektromagnetischer Strahlung innerhalb des Lichts und den Elektronen in der Materie. Heinrich Hertz beschrieb diesen Effekt zum ersten Mal im Jahre 1886. Eine Erklärung des Effekts lieferte Albert Einstein im Jahre 1905, womit er einen Grundstein der Quantenmechanik legte. Dafür bekam Einstein auch den Nobelpreis. Der Effekt ist unter anderem wichtig für Solarenergie. Wissenswertes zum Thema erfährst du hier.