Leider unterstützen wir Internet Explorer nicht mehr.

Bitte verwenden Sie Microsoft Edge, Google Chrome oder Firefox.

>
Ratgeber-Übersicht
>
Kreisfrequenz – Fragen, Antworten, Definitionen

Kreisfrequenz – Fragen, Antworten, Definitionen

Die Winkelgeschwindigkeit und die Kreisfrequenz begegnen uns tagtäglich im Leben. Dies gilt sowohl in einem sehr grossen Massstab, etwa für den Umlauf der Planeten um die Sonne, als auch im Kleinen. Sowohl die Herzfrequenz als auch die Bewegung der Gelenke können mit einer kreisförmigen Bewegung verglichen werden. Aber auch in der Elektrotechnik macht man sich die Kreisfrequenz zunutze. Wissenswertes zum Thema gibt es hier.

Was ist eine Kreisbewegung?

Die quantitative Beschreibung eines Ereignisses erfordert in der Physik die Angabe von physikalischen Grössen. In einem System wie dem SI-Einheitensystem werden Grund- und Basisgrössen ausgewählt, von denen andere Grössen abgeleitet werden. Eine gleichförmige Geschwindigkeit ist somit immer eine abgeleitete Grösse der Definitionsgleichung Länge dividiert durch Zeit, die gleichzeitig die Dimension der Geschwindigkeit beschreibt. Für eine rechteckige Fläche ergibt sich entsprechend die Dimension der Seitenlängen zum Quadrat.

Bleibt eine kreisförmige Bewegung hinsichtlich seiner Geschwindigkeit konstant, wird sie gleichförmige Kreisbewegung genannt. Die Geschwindigkeit eines Körpers auf einer Kreisbahn wird hingegen Bahngeschwindigkeit genannt. Folgende physikalische Grössen werden zur Beschreibung einer kreisförmigen Bewegung im Einheitensystem genutzt, von denen sich andere Grössen ableiten lassen:

  • Umlaufdauer
  • Kreisfrequenz
  • Bahnradius
  • Bahngeschwindigkeit
  • Winkelgeschwindigkeit

Wie wird die kreisförmige Bewegung eines Körpers definiert?

Wird ein vom Mittelpunkt ausgehender Strahl einmal um seinen Ursprung gedreht, legt er also den vollen Kreisumfang zurück, wird dies Vollwinkel genannt. Im Gradmass entspricht ein Vollwinkel 360 Grad. Wird das Bogenmass verwendet, entspricht ein Vollwinkel 2π. Der Umfang Pi (π) eines Kreises entspricht hingegen einem Durchmesser von eins. Das Bogenmass hat die Einheit Radiant (rad). Wird der Vollwinkel im Zeitmass angegeben, so entspricht der Kreisumfang 24 Stunden und trägt als Einheit die Zeit. Um eine kreisförmige Bewegung zu beschreiben, gilt:

  1. Die Umlaufdauer T in Sekunden, ist die Zeit, die ein Körper für den vollen Kreisumlauf benötigt.
  2. Der Kreisradius r in Meter ist die Entfernung des Körpers von der Kreisbahn zum Mittelpunkt.
  3. Die Frequenz f ist die Anzahl der Umläufe in einer bestimmt Zeiteinheit. 1/s entspricht 1 Hertz.
  4. Die Bahngeschwindigkeit v einer gleichförmigen Bewegung ergibt sich aus dem Kreisumfang (2πr) und der Umlaufdauer (T), also dem zurückgelegten Weg pro Sekunde.

Wie hängen Phasenwinkel, Winkelgeschwindigkeit und Kreisfrequenz zusammen?

Als Phasenwinkel oder Phase wird normalerweise die momentane Position eines periodischen Vorgangs bezeichnet. Bei einem sinusförmigen, kreisförmigen Verlauf ist die Phase eine Winkelfunktion. Zur Darstellung einer Schwingung kann sie mit der Rotation eines Zeigers, also mit einer kreisförmigen Bewegung verglichen werden: Die Zeigerlänge entspricht der Amplitude der Schwingung, wobei ein Zeigerumlauf dem Vollwinkel 2π entspricht und somit einer Schwingungsperiode. Der Zeigerweg auf der äusseren Kreisbahn von einem Zeitpunkt x zum Zeitpunkt y bedeutet eine Winkeländerung, dies ist der Phasenwinkel ϑ (Theta). Die Änderung des Zeigerwinkels, also der Phasenwinkel pro Zeit in Sekunde, ergibt die Winkelgeschwindigkeit ω (Omega), deren Einheit rad/s ist. Aus der Winkelgeschwindigkeit lässt sich die Kreisfrequenz ableiten, deren Einheit hier jedoch nicht Hertz, sondern 1/s entspricht.

Welche Schwingungen werden in der Physik und Schwingungslehre voneinander unterschieden?

Wird ein schwingungsfähiges System, wie ein Resonator oder Oszillator von aussen einmal angestossen, schwingt er ohne weitere äussere Einwirkung. Dies geschieht in einer für das System typischen Eigenfrequenz und wird deshalb freie Schwingung genannt. Wirken Kräfte periodisch von aussen ein, ist dies eine erzwungene Schwingung. Nimmt die Bewegungsenergie der Schwingung durch Reibungskräfte ab, wird sie gedämpft. Im umgekehrten Fall ist die Schwingung ungedämpft. Folgende Schwingungen werden in der Schwingungslehre voneinander unterschieden:

  • ungedämpft, gedämpft, aperiodisch
  • frei, erzwungen
  • periodische, nichtperiodische, chaotische
  • linear, nichtlinear
  • mit einem oder mehreren Freiheitsgraden
  • kontinuierlich, oszillierend

Was ist der Unterschied zwischen Wellen und Schwingungen?

In der Schwingungslehre wird die räumliche Ausbreitung einer Schwingung als Welle bezeichnet. Die Welle kann sich sowohl ein-, zwei- oder dreidimensional ausbreiten und erzeugt ein sogenanntes Wellenfeld. Zum Beispiel kann sich Schall oder Licht in alle Richtungen des Raumes ausbreiten und erzeugt dabei sogenannte Kugelwellen. Dies lässt sich durch die kreisförmige Ausbreitung von Wasserwellen veranschaulichen, nachdem ein Stein ins Wasser geworfen wurde. Wiederholen sich die Schwingungen periodisch, so stimmen die Phasen, also die Wellenberge an jedem Ort überein. Der Abstand dieser Phasen ist die Wellenlänge λ (Lambda). Beschreibt die Wellenlänge die räumliche Periodizität der Welle, so beschreibt die Schwingungsdauer T die zeitliche Periodizität. Diese Welle ist eine Sinusfunktion, deren Ausbreitungsgeschwindigkeit c abhängig von der Wellenlänge und Schwingungsdauer ist. Es gilt: c = λ / T. Im Gegensatz dazu beschreibt die Wellenzahl k, die Anzahl N einer auf einer bestimmten Länge entfallenden Wellenlänge und ist ähnlich der Frequenz.

Welche technischen Anwendungsmöglichkeiten ermöglicht die Kreisfrequenz?

Wellen und Schwingungen werden in vielen verschiedenen technischen und naturwissenschaftlichen Anwendungsbereichen genutzt, deren Funktionen ganz unterschiedlicher Natur sein können. Dazu zählen:

  • in der Mechanik: Pendel, Klaviersaite
  • in der Elektrizitätslehre: Schwingkreis, Wechselspannung, Wechselstromtechnik
  • in der Atomphysik: Molekülschwingungen, Lichtwellen
  • in der Festkörperphysik: Kristallgitterschwingungen

Wie breiten sich die Wellen in Wellenfeldern aus?

Wellen, wie zum Beispiel Wasserwellen, Lichtwellen oder Schallwellen werden nach ihrer Polarisation, das heisst ihrer räumlichen Ausbreitungsrichtung, in Longitudinalwelle und Transversalwelle unterschieden. Schwingt die Welle parallel zur Ausbreitungsrichtung, ist dies eine Longitudinalwelle. Schwingt die Welle senkrecht zur Ausbreitungsrichtung, sprechen wir von einer Transversalwelle. Beispiele sind:

  • Longitudinalwelle: Druckwelle, Schallwelle
  • Transversalwelle: Lichtwelle (elektromagnetische Welle), Saitenschwingung

Das könnte dich auch interessieren

Phasenprüfer für mehr Sicherheit bei handwerklichen und elektrischen Arbeiten

Um die Spannung auf einer Leitung oder in einer Steckdose zu prüfen, ist ein Phasenprüfer für Handwerker und Elektriker unverzichtbar. Die Geräte gibt es für den professionellen Bereich ebenso wie für den Heimbedarf. Entscheidend ist, dass sie zuverlässig funktionieren und auch Volt-Werte im kleineren Bereich messen. Spannungsprüfer mit digitaler LCD-Anzeige sind besonders empfehlenswert. Ein Phasenprüfer mit LED oder Glimmlampe dagegen ist günstig und für viele Zwecke geeignet.

Wasserenergie – eine unschätzbare Chance zur klimafreundlichen Stromerzeugung

Die Schweiz wird gerne als „Wasserschloss Europas“ bezeichnet. Kaum ein anderes Land verfügt über so reichhaltige Wasservorkommen in Verbindung mit einem natürlichen Gefälle. Dieser Standortvorteil wird seit langem genutzt und soll sogar noch weiter ausgebaut werden. Welche Möglichkeiten stecken in diesen unerschöpflichen Ressourcen – und werden dabei vielleicht Risiken übersehen? In unserem FAQ beantworten wir dir die wichtigsten Fragen zum Thema Wasserenergie.

Ampere berechnen: Schritt für Schritt die Stromstärke in verschiedene Einheiten umrechnen

Volt, Watt, Ampere – wer blickt da noch durch? Was bedeuten die verschiedenen Angaben, die du auf Geräten, Steckdosen und Batterien findest? Vor vielen Jahren hast du wahrscheinlich in der Schule gelernt, wie man das alles be- und umrechnet und was die verschiedenen Informationen überhaupt bedeuten. Im Alltag brauchst du dieses Wissen aber kaum – kein Wunder also, dass du man das in Regel nicht einfach so weiss. Wir erklären dir alles, was du zu Watt, Volt und Ampere wissen musst und zeigen dir, wie du in wenigen Schritten Ampere berechnen kannst.

Die elektromotorische Kraft als Spannungserzeuger

Ein Elektromotor oder Generator ist kompliziert aufgebaut. Er enthält elektrische Leiter und Magnetfelder, um die elektrische Spannung und Gleichstrom zu erzeugen, und zwar umso mehr, je schneller die Bewegung erfolgt. Eine wichtige Rolle spielt dabei die elektromotorische Kraft, die im Elektromotor dann als sogenannte Gegen-EMK oder Quellenspannung fungiert. Dadurch kann bei einem Motor mit Gleichstrom die Grenzdrehzahl für eine benötigte Spannung errechnet werden. Diese Kraft wirkt auch in den Spulen elektrodynamischer Lautsprecher, um eine bessere Dämpfung zu erzielen und ein Nachschwingen zu verhindern.

Widerstände berechnen – ganz einfach erklärt

Widerstände zu berechnen, gehört zu den Grundlagen in der Ausbildung zum Elektrotechniker. Aber auch wenn du nicht vom Fach bist: Es ist auf jeden Fall interessant, wie man bei der Berechnung von Widerständen in einer Reihen- oder Parallelschaltung vorgeht. Zusätzlich bietet unser Artikel noch weitere nützliche und wissenswerte Fakten rund um das Thema Elektrizität.

Storensteuerungen – wir beantworten die wichtigsten Fragen zum Thema

Sie hängen vor Fenstern, Schiebetüren und unter Glasdächern, spenden Schatten, halten Insekten fern und regulieren die Temperatur. Früher musstest du aber erst einmal kurbeln, bevor du all diese Vorzüge eines Storen geniessen kannst. Heute sind viele Produkte mit Storensteuerungen ausgestattet. Die Rollladen und Sonnenstoren öffnen und schliessen sich also per Knopfdruck. Einige funktionieren sogar ganz automatisch. So gibt es zum Beispiel Lamellenstoren aus Aluminium für Glasfassaden, die auf das Wetter reagieren. So etwas sorgt nicht nur für mehr Komfort, sondern auch für eine erhöhte Sicherheit. Erfahre in diesem FAQ mehr über die verschiedenen Steuerungsmöglichkeiten der praktischen Schattenspender.