Leider unterstützen wir Internet Explorer nicht mehr.

Bitte verwenden Sie Microsoft Edge, Google Chrome oder Firefox.

Finde die besten Elektriker in deiner Nähe
>
Ratgeber-Übersicht
>
Elektrisches Potential – die unsichtbare Kraft der Leistung!

Elektrisches Potential – die unsichtbare Kraft der Leistung!

Das Potenzial, aus dem Lateinischen potentia für Kraft oder Leistung, bedeutet in der Physik, eine Arbeit zu verrichten. Als physikalische Grösse der klassischen Elektrodynamik, die sich sowohl mit der zeitlichen Veränderung von elektrischen und magnetischen Feldern als auch mit der Bewegung von elektrischen Ladungen innerhalb dieser Felder beschäftigt, ist ihr grundlegendes Merkmal die elektromagnetische Wechselwirkung. Der Elektromagnetismus gehört zu den vier Grundkräften der Physik und ist für die meisten alltäglichen Phänomene, wie natürliches Licht und Elektrizität, verantwortlich. Zwischen zwei entgegengesetzt geladenen Teilchen wird durch Arbeit, das Verschieben eines Teilchens, eine Potenzialdifferenz aufgebaut. Dies ist die elektrische Spannung U in Volt.

Was bedeutet der Begriff Potenzial?

Der Begriff Potenzial wird in vielen naturwissenschaftlichen Fachbereichen unterschiedlich definiert. Allgemein bedeutet Potenzial jedoch, Arbeit zu verrichten. In der Physik werden deswegen das elektrische Potential vom Gravitationspotential unterschieden und in der Chemie das chemische vom elektrochemischen Potential. In der Mathematik gibt es ausserdem das Vektorpotential und Skalarpotential.

Wie entsteht das elektrische Potential im Feld?

Der Begriff Potential stammt aus der Mechanik und beschreibt eine skalare Ortsfunktion im Gravitationsfeld. Befindet sich eine Probemasse an einem definierten Ort, so lässt sich durch Differenziation die Kraft F bestimmen, die an diesem Ort auf die Masse wirkt.

Das elektrische Potential, als eine physikalische Grösse der Elektrodynamik, beschreibt den Quotienten der potenziellen Energie einer Punktladung und dessen Ladung in einem Punkt des elektrischen Feldes, dem Potentialfeld. Angenommen, in einem elektrischen Feld soll eine positive Ladung Q von einer negativen Ladung q entfernt werden, so muss dazu Arbeit verrichtet werden. Wird die Ladung unendlich weit entfernt, ist die Coulombkraft zwischen beiden Ladungen Null. Die dafür notwendige Arbeit ist das elektrische Potential des Punktes a, einer Ortskoordinate im elektrischen Feld. Jedem Punkt im Vektorfeld kann somit ein skalares Potential zugeordnet werden.

Welcher Zusammenhang besteht zwischen dem elektrischen Potential und der elektrischen Spannung?

Wird zwei Punkten a und b in einem Vektorfeld ein Potential zugeordnet, ergibt sich daraus eine Potentialdifferenz zwischen den Punkten. Diese Potentialdifferenz ist die elektrische Spannung U, die somit der Arbeit entspricht, die aufgewendet werden muss, um die Ladung q von a nach b zu verschieben. Die Ladungsverschiebung bedeutet einen Energiezuwachs. Diese ist die potentielle Energie der Ladung q im Punkt b gegenüber Punkt a. Wird der Abstand von zwei ungleichen Ladungen vergrössert, erhöht sich die potentielle Energie der Ladung, da die Coulombkraft anziehend wirkt. Im umgekehrten Fall, bei zwei gleichen sich abstossenden Ladungen, wird die potentielle Energie verringert.

Warum wird das Potential in der Physik auch potentielle Energie genannt?

Das elektrische Potential wird auch potentielle Energie genannt, da es die Lage der Ladung im Kraftfeld, also dem elektrischen Feld beschreibt. Es ist somit eine Zustandsgrösse des derzeitigen Zustandes eines physikalischen Systems. Wird eine Ladung oder ein Körper im Feld oder Raum verschoben, ändert sich dessen kinetische Energie. Laut dem Energieerhaltungssatz bleibt die Gesamtenergie in einem abgeschlossenen System erhalten. Dementsprechend kann eine Energieform nur in eine andere Energieform umgewandelt werden. Es werden voneinander unterschieden:

  • kinetische Energie
  • potentielle Energie
  • elektrische Energie
  • thermische Energie
  • chemische Energie

Wird eine Probeladung q im elektrischen Feld verschoben, so führt die Veränderung der potentiellen Energie gleichermassen zur Zu- oder Abnahme der kinetischen Energie oder elektrischen Feldenergie.

Was ist eine Potentialfunktion?

Die mathematische Herleitung des Begriffes Potential darf nicht mit der physikalischen Zustandsbeschreibung, also dem Verhältnis eines Körpers und seiner potentiellen Energie zur Ladung und Masse, verwechselt werden. Hier können Funktionswerte (Volt, Ampere), aber auch Wechselwirkungen mit dem elektrischen Feld gemeint sein. In der Mathematik spricht man deswegen nicht von einem Vektorfeld, sondern von einem skalaren Feld, also von Skalarpotentialen, deren mathematische Grundlage die Potentialfunktion in einem elektrischen oder magnetischen Feld ist. Grafisch werden Potentialfunktionen in einem Koordinatensystem durch Stromlinien und Potentiallinien wiedergegeben.

Wie wird das elektrische Potential gemessen?

Das elektrische Potential, also die Potentialdifferenz und Spannung U an einem beliebigen Punkt im elektrischen Stromkreis, wird mithilfe eines Voltmeters gemessen. Das Potential einer beliebigen Stelle wird neutral, also auf null Volt festgelegt. Dies ist in den meisten Fällen der Minuspol oder die Masse (Erde). Der andere Pol des Voltmeters wird mit einer beliebigen Stelle im Stromkreis verbunden und das Voltmeter zeigt den Spannungsunterschied an.

Was ist ein elektrischer Schwingkreis?

Werden in einem Stromkreis eine Spule sowie ein Kondensator in Reihe hintereinander angeordnet und eine Wechselspannung angelegt, entsteht ein elektrischer Schwingkreis. Dieser elektromagnetische Schwingkreis wandelt stetig elektrische Feldenergie des Kondensators in magnetische Feldenergie der Spule um und umgekehrt.

Ist der Kondensator nach dem Anlegen der Spannung aufgeladen und wird die Spannungsquelle entfernt, ist die Feldstärke gleich null und es wird keine Kraft auf die Teilchen oder Ladungsträger ausgeübt. Demzufolge entlädt sich der Kondensator und das elektrische Feld zwischen den Kondensatorplatten baut sich ab. Im Schwingkreis ist hingegen noch Stromstärke vorhanden, die an der Spule ein Magnetfeld erzeugt. Kommt der Stromkreis zum Erliegen, bricht das Spulenfeld zusammen. Da ein zeitlich veränderliches Magnetfeld laut Induktionsgesetzt Induktionsgesetz eine Spannung erzeugt, wird wiederum elektrischer Strom im Schwingkreis erzeugt. Das Aufladen des Kondensators beginnt von neuem. Dieser periodische Vorgang wird als harmonische Oszillation oder harmonische Schwingungen bezeichnet.

Der Elektrikervergleich für die Schweiz. Finde die besten Elektriker in deiner Nähe - mit Preisen und Bewertungen!

Das könnte dich auch interessieren

Aufputz Steckdosen – zweckmässige Lösung für viele verschiedene Aufgaben

Aufputz Steckdosen sind ein bisschen wie die hässlichen grossen Schwestern der schicken kleinen Steckdosen, die elegant und unauffällig unter Putz installiert sind. Doch Aufputz Steckdosen haben durchaus ihren Sinn, denn sie sind überall dort unentbehrlich, wo aus den verschiedensten Gründen eine Installation unter Putz nicht in Frage kommt. Auch wenn sie optisch immer im Schatten der hübscheren Geschwister stehen, müssen sie sich aus technischen Gründen nicht verstecken. Aufputz Steckdosen sind mit den gleichen Merkmalen erhältlich wie alle anderen Steckdosen auch – zum Beispiel als Schutzkontaktsteckdosen, in allen Schutzklassen und bei Bedarf auch mit Kindersicherung, Klappdeckel oder USB-Anschluss.

Stromkabel verbinden - auch für Laien!

Vor allem ältere Stromkabel nutzen sich mit der Zeit ab und es kann zu einem Kabelbruch kommen. Das passiert auch oft dann, wenn Kabel bei anderen Arbeiten aus Versehen in Mitleidenschaft gezogen werden. Doch wenn kleinere Kabel in deinem Haus brechen, musst du nicht direkt einen Elektriker anrufen. Mit unseren Tipps führst du die Elektroinstallation einfach selbst durch. Dabei ist es egal, ob du nach einem Defekt die Stromkabel verbinden oder zum Beispiel eine Lampe anschliessen willst. Mit unserer Anleitung machst du in einfach gelagerten Fällen nichts falsch.

Glasfaseranschlüsse – die wichtigsten Fragen und Antworten

Glasfaseranschlüsse erzeugen schnellere Datenübertragungsgeschwindigkeiten durch die Verwendung von Lichtimpulsen. Diese bilden einen elektromagnetischen Träger, der Daten mithilfe einer Glasröhre sendet. Diese Art der Internetverbindung ist teurer und komplexer zu installieren als herkömmliche Kabel, erzeugt jedoch eine extrem schnelle Verbindung über grössere Entfernungen. Normalerweise ist die Internetverbindung umso langsamer, je grösser die Entfernung ist. Das ist beim Glasfaser-Internet jedoch nicht der Fall. Wie teuer eine Glasfaserverbindung ist, was du brauchst, um sie zu installieren und weitere Fragen rund um das Thema Glasfaser beantworten wir in diesem Artikel.

Supraleitungen: die Magie der schwebenden Gegenstände ohne äusseren Einfluss!

Es klingt wie Magie, ist aber Realität. Ein Metallkörper schwebt scheinbar schwerelose im Raum, ohne jedweden äusseren Einfluss. Dieses Bild eines Supraleiters begeistert nicht nur Science-Fiction Fans, sondern gehört mittlerweile in jeder Physikoberstufe zum Lehrplan. Die Details dahinter klingen nahezu so fantastisch wie der Vorgang selbst, den die Welt übrigens bereits am 8. April 1911 zum ersten Mal bestaunen durfte. Mit der Abkühlung von Quecksilber auf vier Grad über absolut Null (minus 269 Grad Celsius), gelang dem niederländischen Physiker und Nobelpreisträger Heike Kamerlingh Onnes die Sensation: Der elektrische Widerstand des Metalls ging auch gleich null, der Supraleiter war geboren.

Gleichrichterschaltung einfach erklärt

Die Aufgabe einer Gleichrichterschaltung ist schnell erklärt: Sie besteht darin, aus einer Wechselspannung eine Gleichspannung zu machen. Bei den Schaltungen gibt es verschiedene Ausführungen. Man verwendet diese Schaltungen, wenn ein Bauteil eine Gleichspannung benötigt, allerdings nur eine Wechselspannung zur Verfügung steht. Wir erklären dir, was es alles an Wissenswertem über die Gleichrichterschaltung gibt.

Kreisfrequenz – Fragen, Antworten, Definitionen

Die Winkelgeschwindigkeit und die Kreisfrequenz begegnen uns tagtäglich im Leben. Dies gilt sowohl in einem sehr grossen Massstab, etwa für den Umlauf der Planeten um die Sonne, als auch im Kleinen. Sowohl die Herzfrequenz als auch die Bewegung der Gelenke können mit einer kreisförmigen Bewegung verglichen werden. Aber auch in der Elektrotechnik macht man sich die Kreisfrequenz zunutze. Wissenswertes zum Thema gibt es hier.