Leider unterstützen wir Internet Explorer nicht mehr.

Bitte verwenden Sie Microsoft Edge, Google Chrome oder Firefox.

Finde die besten Elektriker in deiner Nähe
>
Ratgeber-Übersicht
>
Photoelektrischer Effekt – kurz dargestellt, einfach erklärt

Photoelektrischer Effekt – kurz dargestellt, einfach erklärt

Der Photoelektrische Effekt beschreibt die Wechselwirkung zwischen elektromagnetischer Strahlung innerhalb des Lichts und den Elektronen in der Materie. Heinrich Hertz beschrieb diesen Effekt zum ersten Mal im Jahre 1886. Eine Erklärung des Effekts lieferte Albert Einstein im Jahre 1905, womit er einen Grundstein der Quantenmechanik legte. Dafür bekam Einstein auch den Nobelpreis. Der Effekt ist unter anderem wichtig für Solarenergie. Wissenswertes zum Thema erfährst du hier.

Was genau ist der Photoelektrische Effekt?

Kurz gesagt: Der Photoelektrische Effekt tritt dann ein, wenn Elektronen sich unter der Einwirkung von elektromagnetischer Strahlung aus dem Atom oder Atomverband lösen. Ein anderer Begriff ist Photoeffekt oder Hertz-Effekt. Dieser Effekt bezieht sich besonders auf Oberflächen aus Metall und ist damit auch für die Elektronik wichtig. In der klassischen Physik lässt sich dieser Effekt kaum erklären, weshalb hier die Quantentheorie einspringen muss. Der Effekt veranlasste Albert Einstein zur Verfassung seiner Lichtquantenhypothese, in der er beschrieb: Jedes Photon verfügt über eine gewisse Menge an Energie. Sobald ein Photon auf eine Metalloberfläche trifft, gibt es seine gesamte Energie an ein Metallelektron ab. Reicht die Energie zur Überwindung der Austrittsarbeit aus, dann verlässt das Elektron die Metalloberfläche.

Was sind Photonen?

Photonen sind Wechselwirkungsteilchen der elektromagnetischen Strahlung. Aus diesem Grund nennt man sie auch Lichtquant oder Lichtteilchen. Es handelt sich um ein Elementarteilchen ohne Masse, jedoch verfügen Photonen über Energie.

Was geschieht mit den Elektronen, wenn sie die Materie verlassen?

Generell unterscheidet man zwischen zwei Photoeffekten: Auf der einen Seite gibt es den äusseren Photoeffekt, auf der anderen den inneren Photoeffekt. Der äussere Photoeffekt wird auch als Photoemission und Hallwachs-Effekt bezeichnet. In diesem Fall können die Photonen in der Strahlung (UV-Strahlung, Infrarot oder sichtbares Licht) die Elektronen aus dem Metall komplett verdrängen. Sie geben ihre Energie an die Elektronen ab. Die Elektronen verfügen nun über kinetische Energie und treten aus. Experimente bezüglich des Photoelektrischen Effekts lassen sich etwa mit Halbleitern, metallischen Platten oder mit einer Kombination einer Kathode und einer Anode ausführen. Ob die Photonen in der Lage sind, die Elektronen aus der Platte zu drängen, hängt von der Wellenlänge, also von der Frequenz ab. Der messbare Austritt der Elektronen nennt sich Photostrom. Mithilfe einer Kathode und einer Anode kann er nachgewiesen werden, da bei einem Photostrom die Elektronen von der Kathode zur Anode wechseln. Die Kathode verfügt dann über eine positive Ladung und die Anode über eine negative Ladung. Ausserdem entsteht dabei eine Spannung.

Was ist die Gegenfeldmethode?

Die Gegenfeldmethode ist eine Methode zum Nachweis des äusseren Photoelektrischen Effekts. Damit lässt sich auch die Austrittsarbeit des Materials ermessen, aus der die Kathode besteht. Bei den Versuchen verwendet man eine Quecksilberdampflampe. Das Licht dieser Lampe wird durch einen Interferenzfilter oder einen Monochromator gefiltert und auf die Kathode gebündelt. Dabei ist ein Vakuum notwendig, damit die Oberfläche der Kathode vor Oxidation geschützt ist. Dann wird eine Spannung zwischen der Kathode und der Anode erzeugt. Ein empfindliches Amperemeter misst dann die dabei entstehende Gegenspannung aus dem Photostrom.

Was ist der innere Photoeffekt?

Der innere Photoeffekt beschreibt den Photoeffekt bei Halbleitern. Darunter versteht man auch die Erhöhung der elektrischen Leitfähigkeit von Halbleitermaterialien bei der Bestrahlung. Dabei kommen Elektron-Loch-Paare zum Einsatz. Durch die Bestrahlung vertreiben die Photonen die Elektronen aus einem Valenzband in ein höher gelegenes Leitungsband. Der Photovoltaische Effekt basiert auf diesem Prinzip. Es ist dieser Effekt, der die Umwandlung von Licht in Energie ermöglicht. Photodioden, auch Solarzellen genannt, machen sich den Photostrom zunutze und erzeugen dadurch elektrische Energie aus dem Licht der Sonne. Ohne diesen Effekt – und ohne die Entdeckung der Lichtquanten – gäbe es möglicherweise keine Solarenergie.

Welche Rolle spielt das Licht?

Der Grund, warum sich der Photoelektrische Effekt lange Zeit nicht erklären liess: Man stellte sich das Licht ganz klassisch als eine Welle dar. Eine Welle verfügt über eine Energie, die von ihrer Amplitude (Intensität) abhängt. Bei einer Bestrahlung von Materie durch eine Welle sollte normalerweise die Materie die Energie der Welle aufnehmen. Nach früherer Vorstellung entschied die Wellenlänge darüber, wie schnell die Materie die Energie aufnehmen würde. Kürzere Wellenlängen bedeuteten hohe Frequenzen und damit eine schnellere Energieabgabe. Allerdings stellte sich heraus, dass die Materie die Energie in der Strahlung sofort (instantan) aufnimmt.

Was geschieht mit der Energie in der Strahlung?

Das bisherige Modell des Lichts war demnach nicht geeignet, den Photoelektrischen Effekt zu beschreiben. Stattdessen führte Albert Einstein die Lichtquanten (Photonen) ein. Die Lichtquanten sind zählbare Teilchen und enthalten die Energie in der Strahlung des Lichts. Sie bewegen sich als eigenständige Teilchen und lassen sich nur als Ganzes absorbieren. Die Energie der Lichtquanten ist abhängig von der Wellenlänge. Sobald diese Lichtquanten auf Materie treffen, ersetzen sie die Elektronen und geben ihre Energie weiter. Ein Elektron absorbiert genau ein Photon. Das Photon oder Lichtquant gibt seine gesamt Energie ab und existiert dann nicht mehr.

Der Elektrikervergleich für die Schweiz. Finde die besten Elektriker in deiner Nähe - mit Preisen und Bewertungen!

Das könnte dich auch interessieren

Steckdosentypen: Diese Unterschiede gibt es weltweit

Andere Länder, andere Sitten – bei einem Urlaub in einem fremden Land ist dir sicher schon einmal aufgefallen, dass die Stromversorgung und die Steckdosentypen oder Steckverbinder sich deutlich von der Norm in deinem Heimatland unterscheiden. So kann es passieren, dass du bei einem Urlaub ausserhalb der Schweiz einen Reiseadapter benötigst. Gleiches müssen natürlich auch deutsche Urlauber beachten, wenn sie einen Urlaub in der Schweiz planen. Weltweit unterscheiden sich nicht nur die einzelnen Steckdosentypen, sondern auch die anliegende Spannung. Entsprechende Informationen über das jeweilige Zielgebiet findest du natürlich im Internet.

Hochspannungsleitungen Schweiz: Zwischen Notwendigkeit und Ablehnung

Hochspannungsleitungen sind für die Stromversorgung und die Herstellung der Versorgungssicherheit in der Schweiz unerlässlich. Ein Ausbau des Stromnetzes wird insbesondere durch die zunehmende Nutzung erneuerbarer Energien immer dringlicher. Dennoch sind die Leitungen unbeliebt, weil sie das Landschaftsbild stören und gesundheitliche Risiken befürchtet werden. Das Wichtigste zum Thema Hochspannungsleitungen in der Schweiz erfährst du hier.

Luftwasserwärmepumpe: Heizung und Warmwasser allein mit Umgebungsluft erzeugen

Du suchst eine effiziente Wärmequelle und eine umweltfreundliche Alternative zur Öl- oder Gasheizung? Dann solltest du über den Einsatzbereich einer Luftwasserwärmepumpe nachdenken. Sie ist im Betrieb sehr sparsam und nutzt allein die Umgebungsluft zum Heizen. Noch dazu profitierst du von einer Förderung in der Schweiz – ein Grund mehr, sich für diese Wärmequelle zu entscheiden. Neben der Luftwasserwärmepumpe gibt es noch andere Pumpenarten, die beispielsweise das vorhandene Grundwasser nutzen. Informiere dich am besten, welche davon für dein Zuhause in Frage kommt.

Energiemonitoring Schweiz: Energieverbrauch messen und regulieren

In der Schweiz gibt es seit Anfang 2018 ein neues Energiegesetz, das es sich zum Ziel setzt, den Energieverbrauch der Eidgenossenschaft zu senken. Zudem soll auf Erneuerbare Energien umgestellt werden, um zukünftig unabhängig, sicher und umweltfreundlich Strom in der Schweiz zu produzieren. Für mehr Energieeffizienz ist die Kooperation aller Bürgerinnen und Bürger gefragt. Hier hilft das Energiemonitoring. Im Folgenden sagen wir dir, wie du dein eigenes Energiemanagement optimieren kannst, korrekt mit deinen Energiedaten umgehst und so letztendlich deine Energiekosten senkst. Ausserdem erfährst du mehr über das Thema Smart Meter, denn diese Messgeräte machen das Energiemonitoring daheim möglich.

USB Kabel Typen: Funktionen und Unterschiede der verschiedenen Standards

Das USB Kabel ist heute allgegenwärtig. Das Universalkabel wurde entwickelt, um die Datenübertragung bei Computern vereinfachen. Doch inzwischen gibt es so viele unterschiedliche USB Kabel Typen, dass viele den Überblick verlieren. Was es mit USB 2.0, USB 3.0 und dem neuen Typ C Anschluss auf sich hat, beantworten wir die hier ebenso wie alle anderen spannenden Fragen zum Thema.

Elektroverteilungen – die wichtigsten Fragen zu Anlagen und Elektrik knapp beantwortet

Schon im Kindergartenalter spielt der Nachwuchs gerne mit Leitungen und Drähten, einem kleinen Stromanschluss über Batterien und farbigen Lämpchen. So erarbeiten sich Kinder die Grundlagen der Elektrotechnik, lernen Physik, bauen ihre ersten Stromkreise und verstehen, was ein Kurzschluss ist. Anleitungen führen durch die kindgerechten Experimente. Nun darf aber nicht jeder, der sich diese Grundlagen früh selbst vermittelt hat, deshalb die Elektrik eines Hauses installieren. Diese Leistung bleibt Fachleuten vorbehalten, die sich mit Schaltanlagen und Schaltschränken in grossen Unternehmen genauso auskennen wie mit dem Elektroschaltplan für das Einfamilienhaus. Wir haben die häufigsten Fragen zu Elektroverteilungen zusammengetragen!